Structure of the Acinetobacter baumannii dithiol oxidase DsbA bound to elongation factor EF-Tu reveals a novel protein interaction site

J Biol Chem. 2014 Jul 18;289(29):19869-80. doi: 10.1074/jbc.M114.571737. Epub 2014 May 23.

Abstract

The multidrug resistant bacterium Acinetobacter baumannii is a significant cause of nosocomial infection. Biofilm formation, that requires both disulfide bond forming and chaperone-usher pathways, is a major virulence trait in this bacterium. Our biochemical characterizations show that the periplasmic A. baumannii DsbA (AbDsbA) enzyme has an oxidizing redox potential and dithiol oxidase activity. We found an unexpected non-covalent interaction between AbDsbA and the highly conserved prokaryotic elongation factor, EF-Tu. EF-Tu is a cytoplasmic protein but has been localized extracellularly in many bacterial pathogens. The crystal structure of this complex revealed that the EF-Tu switch I region binds to the non-catalytic surface of AbDsbA. Although the physiological and pathological significance of a DsbA/EF-Tu association is unknown, peptides derived from the EF-Tu switch I region bound to AbDsbA with submicromolar affinity. We also identified a seven-residue DsbB-derived peptide that bound to AbDsbA with low micromolar affinity. Further characterization confirmed that the EF-Tu- and DsbB-derived peptides bind at two distinct sites. These data point to the possibility that the non-catalytic surface of DsbA is a potential substrate or regulatory protein interaction site. The two peptides identified in this work together with the newly characterized interaction site provide a novel starting point for inhibitor design targeting AbDsbA.

Keywords: Crystallography; Enzyme Catalysis; Peptides; Protein Structure; Protein-Protein Interaction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acinetobacter Infections / drug therapy
  • Acinetobacter Infections / microbiology
  • Acinetobacter baumannii / drug effects
  • Acinetobacter baumannii / enzymology*
  • Acinetobacter baumannii / genetics
  • Amino Acid Sequence
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Crystallography, X-Ray
  • Drug Design
  • Drug Resistance, Multiple, Bacterial
  • Humans
  • Models, Molecular
  • Peptide Elongation Factor Tu / chemistry*
  • Peptide Elongation Factor Tu / genetics
  • Peptide Elongation Factor Tu / metabolism*
  • Peptide Fragments / chemistry
  • Peptide Fragments / genetics
  • Peptide Fragments / metabolism
  • Protein Conformation
  • Protein Disulfide-Isomerases / chemistry*
  • Protein Disulfide-Isomerases / genetics
  • Protein Disulfide-Isomerases / metabolism*
  • Protein Interaction Domains and Motifs
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Static Electricity
  • Thermodynamics

Substances

  • Bacterial Proteins
  • Peptide Fragments
  • Recombinant Proteins
  • Peptide Elongation Factor Tu
  • Protein Disulfide-Isomerases

Associated data

  • PDB/4P3Y