Chloropeptin II

Chloropeptin II

* Please be kindly noted products are not for therapeutic use. We do not sell to patients.

Category Others
Catalog number BBF-00316
CAS 69598-75-0
Molecular Weight 1328.76
Molecular Formula C61H45Cl6N7O15

Online Inquiry

Description

Chloropeptin II is produced by the strain of Streptomyces sp. WK-3419. Chloropeptin I and II inhibited the binding of gp120 to CD4 with IC50 of 2.0 and 3.3 μmol/L, respectively, with the activity of selective anti-human immunodeficiency virus (HIV).

Specification

Synonyms Isocomplestatin
IUPAC Name (2R)-2-[[(17R,20R,23R,26R,29S)-20,26-bis(3,5-dichloro-4-hydroxyphenyl)-17-[[2-(3,5-dichloro-4-hydroxyphenyl)-2-oxoacetyl]amino]-37-hydroxy-28-methyl-18,21,24,27-tetraoxo-2-oxa-13,19,22,25,28-pentazahexacyclo[29.2.2.13,7.18,12.05,23.011,15]heptatriaconta-1(33),3,5,7(37),8(36),9,11,14,31,34-decaene-29-carbonyl]amino]-2-(4-hydroxyphenyl)acetic acid
Canonical SMILES CN1C(CC2=CC=C(C=C2)OC3=CC4=CC(=C3O)C5=CC6=C(C=C5)C(=CN6)CC(C(=O)NC(C(=O)NC4C(=O)NC(C1=O)C7=CC(=C(C(=C7)Cl)O)Cl)C8=CC(=C(C(=C8)Cl)O)Cl)NC(=O)C(=O)C9=CC(=C(C(=C9)Cl)O)Cl)C(=O)NC(C1=CC=C(C=C1)O)C(=O)O
InChI InChI=1S/C61H45Cl6N7O15/c1-74-44(56(82)73-49(61(87)88)25-4-7-32(75)8-5-25)12-24-2-9-33(10-3-24)89-45-22-27-13-35(51(45)77)26-6-11-34-31(23-68-42(34)20-26)21-43(69-59(85)50(76)30-18-40(66)54(80)41(67)19-30)55(81)70-47(28-14-36(62)52(78)37(63)15-28)57(83)71-46(27)58(84)72-48(60(74)86)29-16-38(64)53(79)39(65)17-29/h2-11,13-20,22-23,43-44,46-49,68,75,77-80H,12,21H2,1H3,(H,69,85)(H,70,81)(H,71,83)(H,72,84)(H,73,82)(H,87,88)/t43-,44+,46-,47-,48-,49-/m1/s1
InChI Key JJGZGELTZPACID-OTLJHNKQSA-N

Reference Reading

1. Synthesis and stereochemical determination of complestatin A and B (neuroprotectin A and B)
Steven P Breazzano, Dale L Boger J Am Chem Soc. 2011 Nov 16;133(45):18495-502. doi: 10.1021/ja208570q. Epub 2011 Oct 20.
Recently, we reported the first total synthesis of chloropeptin II (1, complestatin), the more strained and challenging of the two naturally occurring chloropeptins. Central to the design of the approach and by virtue of a single-step, acid-catalyzed ring expansion rearrangement of chloropeptin II to chloropeptin I, the route also provided a total synthesis of chloropeptin I. Herein, we report a complementary and divergent oxidation of chloropeptin II (1, complestatin) to either complestatin A (2, neuroprotectin A) or complestatin B (3, neuroprotectin B), providing the first synthesis of the natural products and establishing their remaining stereochemical assignments. Key to the approach to complestatin A (2, neuroprotectin A) was the development of two different single-step indole oxidations (HCl-DMSO and NBS, THF-H(2)O) that avoid the rearrangement of chloropeptin II (1) to chloropeptin I (4), providing the 2-oxindole 2 in superb yields (93% and 82%). With a mechanistic understanding of features that impact the latter oxidation and an appreciation of the intrinsic reactivity of the chloropeptin II indole, its modification (NCS, THF-H(2)O; Cs(2)CO(3), DMF-H(2)O) provided a two-step, single-pot oxidation of chloropeptin II (1) to afford directly the 3-hydroxy-2-oxindole complestatin B (3, neuroprotectin B). Extensive studies conducted on the fully functionalized synthetic DEF ring system of chloropeptin II were key to the unambiguous assignment of the stereochemistry as well as the exploration and subsequent development of the mild oxidation conditions used in the synthesis of complestatin A and B.
2. Complestatin exerts antibacterial activity by the inhibition of fatty acid synthesis
Yun-Ju Kwon, Hyun-Ju Kim, Won-Gon Kim Biol Pharm Bull. 2015;38(5):715-21. doi: 10.1248/bpb.b14-00824.
Bacterial enoyl-acyl carrier protein (ACP) reductase has been confirmed as a novel target for antibacterial drug development. In the screening of inhibitors of Staphylococcus aureus enoyl-ACP reductase (FabI), complestatin was isolated as a potent inhibitor of S. aureus FabI together with neuroprotectin A and chloropeptin I from Streptomyces chartreusis AN1542. Complestatin and related compounds inhibited S. aureus FabI with IC₅₀ of 0.3-0.6 µM. They also prevented the growth of S. aureus as well as methicillin-resistance S. aureus (MRSA) and quinolone-resistant S. aureus (QRSA), with minimum inhibitory concentrations (MICs) of 2-4 µg/mL. Consistent with its FabI-inhibition, complestatin selectively inhibited the intracellular fatty acid synthesis in S. aureus, whereas it did not affect the macromolecular biosynthesis of other cellular components, such as DNA, RNA, proteins, and the cell wall. Additionally, supplementation with exogenous fatty acids reversed the antibacterial effect of complestatin, demonstrating that it targets fatty acid synthesis. In this study, we reported that complestatin and related compounds showed potent antibacterial activity via inhibiting fatty acid synthesis.
3. Computational exploration of natural peptides targeting ACE2
Meixi He, Yi Wang, Shuai Huang, Nan Zhao, Mengchun Cheng, Xiaozhe Zhang J Biomol Struct Dyn. 2022 Oct;40(17):8018-8029. doi: 10.1080/07391102.2021.1905555. Epub 2021 Apr 7.
Interaction between the SARS-COV-2 (2019 novel coronavirus) spike protein and ACE2 receptors expressed on cellular surfaces initialises viral attachment and consequent infection. Blocking this interaction shows promise for blocking or ameliorating the virus' pathological effects on the body. By contrast to work focusing on the coronavirus, which has significant potential diversity through possible accumulation of mutations during transmission, targeting the conserved ACE2 protein expressed on human cells offers an attractive alternative route to developing pharmacological prophylactics against viral invasion. In this study, we screened a virtual database of natural peptides in silico, with ACE2 as the target, and performed structural analyses of the interface region in the SARS-COV-2 RBD/ACE2 complex. These analyses have identified 15 potentially effective compounds. Analyses of ACE2/polypeptide interactions suggest that these peptides can block viral invasion of cells by stably binding in the ACE2 active site pocket. Molecular simulation results for Complestatin and Valinomycin indicate that they may share this mechanism. The discovery of this probable binding mechanism provides a frame of reference for further optimization, and design of high affinity ACE2 inhibitors that could serve as leads for production of drugs with preventive and therapeutic effects against SARS-COV-2. Communicated by Ramaswamy H. Sarma.

Bio Calculators

Stock concentration: *
Desired final volume: *
Desired concentration: *

L

* Our calculator is based on the following equation:
Concentration (start) x Volume (start) = Concentration (final) x Volume (final)
It is commonly abbreviated as: C1V1 = C2V2

* Total Molecular Weight:
g/mol
Tip: Chemical formula is case sensitive. C22H30N4O c22h30n40
g/mol
g

Recently viewed products

Online Inquiry

Verification code
cartIcon
Inquiry Basket