Assay Method Information

Assay Name:  Z-LYTE biochemical assay
Description:  Z′-LYTE biochemical assay employs a fluorescence resonance energy transfer (FRET)based, coupled-enzyme format and is based on the differential sensitivity of phosphorylated and non-phosphorylated peptides to proteolytic cleavage. Both ends of the short peptide substrate are labeled with two fluorescent groups to form a FRET paired combination. In the primary reaction (the Kinase Reaction), the kinase transfers the γ-phosphate of ATP to a single serine or threonine residue on the short peptide substrate. In the secondary reaction (the development reaction), the non-phosphorylated short peptides were recognized and cleaved by a site-specific protease (the development reagent). Phosphorylated short peptides can resist such cleavage. Cleavage of short peptides can disrupt the donor (such as coumarin) and receptor fluorophores (fluorescein) on the short peptides, while the phosphorylated short peptides can maintain FRET. The calculation method of the ratio is as follows, and the ratio of the respective emission signals generated by the donor fluorophores emitted (after excitation at 400 nm) to the receptors is calculated. Emission signal ratio=emitted light by coumarin (445 nm)/emitted light by fluorescein (520 nm). If the FRET short peptide is phosphorylated (such as no kinase inhibitor), the emitted light ratio will remain in a lower level. If the FRET short peptide is non-phosphorylated (such as kinase inhibitor), the emitted light ratio will be in a higher level. In this way, the inhibitory effects of different compound inhibitors on BTK kinase activity would be distinguished.The experiment were carried out according to the instructions of the Z′-LYTE kinase test kit-tyrosine 1 peptide. Reagent preparation: 1.33× kinase buffer: 5× kinase buffer was diluted with water to 1.33× kinase buffer; an enzyme solution: the kinase was dissolved in 1.33× kinase buffer with the final working concentration being 3.32 nM; a short peptide solution: a short peptide stock solution (1 mM dissolved in DMSO) was dissolved in 1.33× kinase buffer with the final working concentration being 2 μM; Z′-LYTE Tyr01 phosphorylated short peptide solution, 0.6 μl of stock solution (1 mM dissolved in DMSO) was dissolved in 149.4 μl of 1.33× kinase buffer; an ATP solution: an ATP stock solution (10 mM aqueous solution) was dissolved in 1.33× kinase buffer with the final working concentration being 32 μM; a color-developing solution: color-developing solution B was dissolved in color-developing buffer with the final working concentration being 1× color-developing solution; 4× compound preparation: the compound was diluted in 3-fold gradient concentration to finally obtain 4% DMSO aqueous solution containing different concentrations of the compound, with the final working concentration being 3000, 1000, 333.33, 111.11, 37.04, 12.35, 4.12, 1.37 nM, 8 concentration points in total.Specific steps of the experiment: In the experiment, there were three control groups, each with 8 replicate wells, which were C1 100% inhibition group (no ATP), C2 0% inhibition group (with ATP), and C3 100% phosphorylation group, respectively. 2.5 μl of serially diluted compound was added to each well of a 384-well plate, with double replicate wells, and 4% DMSO solution was added to wells C1, C2, and C3. After that, except for wells C3, 2.5 μl of BTK enzyme solution was added to each remaining well, which was left to stand at 4° C. for 30 minutes. After that, except for wells C3, 2.5 μl of short peptide solution was added to each well, and 5 μl of phosphorylated short peptide solution was added to each of wells C3. 2.5 μl of 1.33× kinase buffer was added to each of wells C1 and C3, and 2.5 μl of ATP solution was added to each of the remaining wells. The wells were centrifuged transiently, and the plate was shaken at 1000 rpm for 30 seconds to perform transient centrifuge.
Affinity data for this assay
 

If you find an error in this entry please send us an E-mail